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  Abstract: The conjugate natural convection-conduction heat transfer in a domain composed 

of nanofluids filled porous cavity heated by a vertical solid wall is studied under steady-state 

conditions. The vertical left wall of the solid is kept isothermal at hot temperature Th. The 

vertical right wall of the solid is in contact with the nanofluid saturated porous medium 

contained in the cavity. The right vertical wall of the cavity is kept isothermally at the lower 

temperature Tc. The upper and lower horizontal walls are kept adiabatic. The governing 

equations of the heat transfer in the solid wall and heat and nanofluid flow, based on the 

Darcy model, in the nanofluid-saturated porous medium together with the derived relation of 

the interface temperature are solved numerically using the over-successive relaxation finite-

difference method. A temperature independent nanofluids properties model is adopted. The 

investigated parameters are the nanoparticles volume fraction   (0-0.2), Rayleigh number Ra 

(10-1000), solid wall to base-fluid saturated porous medium thermal conductivity ratio kwf 

(0.1, 1, 10), and the solid wall thickness D (0.05-0.5). The results are presented in the 

conventional form; contours of streamlines and isotherms and the average Nusselt number. At 

a very low Rayleigh number Ra=10, an enhancement in heat transfer within the porous cavity 

with   is observed. Otherwise, the heat transfer may be unchanged or deteriorated with   

depending on the wall thickness D and the conductivity ratio kwf.  
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 تباينيا  انتقال الحرارة المقترن خلال فجوة مسامية مشبعة بمائع نانوي و مسخنة 
 

 منير عبد الجليل اسماعيل    &         أحمد عبد الكريم مهدي

 قسم الهندسة الميكانيكية -كلية الهندسة -جامعة البصرة

 الخلاصة
حيز مكون من فجوة مسامية مشبعة بمائع نانوي و مسخنة بجداار مودودي   توصيل( خلال -تم في هذا البحث دراسة انتقال الحرارة المقترن )حمل

و سطحه الأيمن في حالة تلامس مع المدائع الندانوي      Thتحت ظرف الأستقرار.  سطح الجاار العوودي الأيسر مثبت منا درجة حرارة ساخنة 
. جاارا الفجوة الأملى و الأسفل معزولان حرارياً.  تم حل   Tcدة المشبع داخل الفجوة المسامية. جاار الفجوة الأيمن مثبت منا درجة حرارة بار

دارسد((   المعادلات الحاكوة لأنتقال الحرارة خلال الجاار الأيمن و معادلات انتقال الحرارة و جريان المائع النانوي )الذي بني ملى أساس نمدوج  
بأستخاام طريقة الفروقات المحادة. خواص المائع النانوي امتبرت ثابتة مدع     Interfaceخلال الفجوة وكذلك المعادلة المشتقة للسطح المشترك 

درجة الحرارة. المتغيرات التي تمت دراستها ه( النسبة الحجوية للجسيوات النانوية  02.00 )رقم رايل ,Ra=(10-1000)   نسبة ,
. تم تمثيدل النتدائ    D=(0.05-0.5)وسمك الجاار العودودي     kwf=(0.1, 1, 10)الموصلية الحرارية للجاار العوودي الى المائع الأساس 

هنالك تحسن في مولية انتقال   Ra=10بالطريقة المعروفة, أي خطوط دالة الجريان و التحارر و متوسط رقم نسلت. بينت النتائ  بأنه منا قيوة 
امتوادا   لنانوية. فيوا ماا جلك, فأن انتقال الحرارة قا لا يتغيراو يتناقص مع الحرارة داخل الفجوة المسامية بزيادة النسبة الحجوية للجسيوات ا

    .   kwfو نسبة الموصلية الحرارية   Dملى سمك الجاار 
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Nomenclature 

D dimensionless wall thickness  Nui,nf local Nusselt number along the interface 

line  

g gravitational field (m s
-2

) Ra Rayleigh number  

   ffff LTcThgKRa    

k thermal conductivity (W m
-1

 K
-1

) T temperature (K) 

K permeability of porous medium 

(m
2
) 

u velocity component along x-direction 

(m s
-1

) 

Kr wall to nanofluid thermal 

conductivity ratio nfwr kkK   

v velocity component along y-direction 

(m s
-1

) 

kwf solid wall to base fluid  thermal 

conductivity ratio fw kkk wf  

U dimensionless velocity component along 

x-direction  

L square cavity wall length (m) V dimensionless velocity component along 

y-direction 

Nu average Nusselt number over the 

right cooled wall 

x,y Cartesian coordinates (m) 

Nui average Nusselt number over the 

interface line. 

X,Y dimensionless Cartesian coordinates 

 

Greek symbols 

 

 

Subscripts 

 

 

α thermal diffusivity (m
2
 s

-1
) c cold 

β 
thermal expansion coefficient 

(K
-1

) 
f 

fluid 

  nanoparticles volume fraction h hot 

µ dynamic viscosity (Pa.s) i interface 

θ dimensionless temperature nf nanofluid 

ρ density (kg m
-3

) p solid nanoparticles 

Ψ dimensionless stream function w wall 
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1. Introduction 
Natural convection inside 

enclosures has received a noticeable 

attention of investigation. This is due to 

their extensive applications in industry like 

cooling or heating systems, energy storage 

system (solar absorber), heat dissipation 

from electronic components, etc. Recently, 

the natural convection process is widely 

improved by using the technique of 

nanofluid. Nanofluid is a term refers to 

nanometer-sized metallic (or non-metallic) 

particles dispersed in a base fluid having, 

relatively, low thermal conductivity (in 

general) like water and ethylene glycol in 

order to obtain a fluid with improved 

thermophysical properties. The history of 

nanofluids investigation may refer to Choi 

and Eastman [1] where the term 

"nanofluids" was firstly introduced. Their 

theoretical study was as "hope" of heat 

transfer enhancement and actually their 

estimations concluded that dramatic 

reductions in heat exchanger pumping 

power could be obtained by dispersing 

copper nanoparticles in water. Pak and Cho 

[2] investigated experimentally the 

turbulent friction and heat transfer 

behavior of dispersed fluids (nanofluids 

term was not activated at that time). Their 

most relevant result was that the Nusselt 

number increased with increasing of 

volume concentration. However, they 

found that the convective heat transfer 

coefficient of the dispersed fluid at a 

certain volume fraction was 12% smaller 

than that of pure water. Therefore, they 

proposed that a better selection of 

nanaoparticles should be taken into 

account. Due to their extent applications 

and progressively developing published 

works concern with nanofluids, many 

researchers published review papers as in 

[3-5]. Khanafar et al. [6] studied the 

variances among different nanofluid 

models based on the physical properties of 

Cu-Water inside differentially heated 

rectangular enclosures. They reported that 

the variants among the models for 

nanofluid density have substantial effect on 

heat transfer rate at a given Grashof 

number. Wen and Ding [7] reported that 

the enhancement of convective heat 

transfer of nanofluids made of γ-Al2O3 and 

de-ionized water was particularly 

significant in the entrance region of a 

laminar flow region of copper tube. The 

same geometry of [6] was studied by 

khodadadi and Hosseinizadeh [8] but they 

directed the problem to be concerning with 

enhancing the thermal conductivity of 

phase change materials. Tiwari and Das [9] 

studied mixed convection inside two-sided 

lid-driven differentially heated square 

cavity. One of their conclusions was that 

nanoparticles were able to change the flow 

pattern of fluid from natural to forced 

convection regime. Choi et al. [10] 

reported that a volume fraction of 0.5% of 

AlN (Aluminum nitride) nanoparticles 

dispersed in transformer oil can increase 

the thermal conductivity by 8% and the 

overall heat transfer coefficient by 20%. 

Santra et al. [11] considered the problem of 

differentially heated square cavity by 

considering the nanofluid as a non-

Newtonian fluid. Their novel result 

showed a considerable decrease in heat 

transfer for increase of solid volume 

fraction for any Rayleigh number. Abu-

Nada et al. [12] considered various 

nanofluids inside horizontal concentric 

annuli. They showed that at intermediate 

value of Rayleigh number with low 

thermal conductive nanparticles, the 

Nusselt number decreased with solid 

volume fraction. Ho et al. [13] studied the 

natural convection of water-Al2O3 

nanofluids filled three sizes of vertically 

square enclosures. The annuli of two 

differentially heated square ducts filled 

with TiO2-Water nanofluid were 

investigated by Arefmanesh et al. [14]. 

Abu-Nada [15] and Abu-Nada and 

Chamkha [16] studied the effects of 

variable physical properties of nanofluids 

on natural convection. 

 

Hence, it is worth it to mention 

here that all of the above surveyed works 
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dealt with viscous clear fluids (non-porous 

media) and that most of them reported that 

it was not always true that increasing the 

volume fraction of solid particles enhanced 

the heat transfer rate. It is found that a 

relatively a limited papers dealing with 

nanofluids saturated in porous media were 

published; and most of these papers 

studied the boundary layer flow. Nield and 

Kuzentov [17] examined the influence of 

nanoparticles natural convection past a 

vertical plate. Their analytical study was 

based on Brownian motion and 

thermophoresis (for nanofluids) and Darcy 

model (for porous media). Ahmed and Pop 

[18] studied numerically mixed convection 

boundary layer flow of the same problem 

of [30] using three different nanoparticles 

based on the conventional model of Tiwari 

and Das [9] which incorporates only the 

nanofluid volume fraction. They followed 

Darcy model also to interpret the flow in 

porous media. Gorla and Chamkha [19] 

considered natural convection boundary 

layer over a non-isothermal flat plate 

embedded in a porous medium. The natural 

convection boundary-layer flow about a 

sphere embedded in porous media was 

considered by Chamkha et al. [20]. More 

recently, Cimpean and Pop [21] studied 

fully developed steady-state mixed 

convection flow of nanofluids in a inclined 

porous channel. They used the Darcy 

model and Tiawri and Das model [9]. 

Hajipour and Dehkordi [22] considered 

mixed convection heat transfer of 

nanofluids based on the Brownian motion 

and thermophoresis in a vertical channel 

partially filled with highly porous medium 

using the Brinkman-Forchheimer model. 

Cheng [23] considered the studies of [19] 

and [20] but for a truncated cone. 

However, the field of nanofluids saturated 

in porous cavities is found published in 

very little works as in Sun and Pop [24] 

and recently, Chamkha and Ismael [25]. 

Sun and Pop [24] considered a triangular 

enclosure heated by a wall heater and filled 

with a porous medium and saturated with 

three different nanofluids. Their numerical 

study was based on the nanofluids model 

of [9] and the Darcy model for porous 

media. The heating wall of [25] was a 

triangular geometry in such a way that the 

inclined wall makes an inclined interface 

with the nanofluid saturated porous 

medium. Both studies [24] and [25] 

recorded in some circumstances the 

adverse relation between the Nusselt 

number and solid volume fraction i.e. 

decreasing of Nusselt number with the 

increase in the solid volume fraction. 

      Thus, what motivates us to 

continue in the field of natural convection 

in enclosures filled with nanofluids 

saturated porous media is the rareness of 

published works and hence, the incomplete 

views regarding this field of investigation. 

Moreover, the present authors are more 

interested in the conjugate conduction-

convection heat transfer features and in 

particular in the case of Saeid [26]. 

Therefore, the present study considers 

steady conjugate conduction- convection 

inside a square cavity, filled with a 

nanofluid-saturated porous medium and 

heated by a vertical solid wall occupying 

one vertical wall of the square cavity. 

 

2. Mathematical modeling 
       Figure 1 is a schematic illustration 

of the problem under consideration.  It is a 

two-dimensional square domain with 

length L, the left side is a solid wall like a 

block with thickness d, kept isothermally at 

higher temperature Th. The thickness d is 

varied while the overall domain is kept as a 

square. The inner surface of the solid wall 

is in contact with the contents-saturated 

porous medium forming the remainder 

domain. The upper and lower walls of the 

overall domain are kept adiabatic. The 

right vertical wall is cooled at constant 

temperature Tc. All of the boundaries are 

assumed impermeable. The pores between 

the solid matrix are assumed to be uniform 

and undeformable. The fluid filling the 

pores is composed of a base fluid (water) 

and nanoparticles forming a nanofluid. 
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They (the base fluid and the nanoparticles) 

are assumed to be in thermal equilibrium 

and no slip occurs between them. The 

nanofluid is assumed incompressible. Also, 

a thermal equilibrium between the 

nanofluid and the solid matrix is assumed 

to exist. The convective (slow) motion of 

the nanofluid in the saturated porous 

medium is considered to satisfy the Darcy 

model and the Boussinesq approximation 

ρ=ρo(1-β(T-To)). The governing equations 

based on these assumptions together with 

adopting Tiwari and Das [9] nanofluid 

model can be written as: 

Continuity: 

0
y

v

x

u










                                            (1)  

Momentum (x- direction) 













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x

pK
u

nf
  (2)  

  

 

Momentum (y- direction) 

 





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







 g

y

pK
v nf

nf




 (3)  

 

The usual way of eliminating the pressure 

terms from momentum equations is by 

differentiating Eq. (2) with respect to y and 

Eq. (3) with respect to x and then 

subtracting the results. So the final 

dimensional form of the momentum 

equation is: 
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x
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Energy (for nanofluid) 
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Energy (for the solid wall) 
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w
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2
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
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where β is the thermal expansion 

coefficient, ρ is the density, K is the 

permeability of the porous medium, μ is 

the dynamic viscosity, α is thermal 

diffusivity of the porous medium and   is 

nanoparticles volume fraction. The 

subscripts p, f, nf, and w stand for solid 

nanoparticles, base fluid, nanofluid, and 

rectangular wall, respectively.  Numerous 

formulations for the thermo-physical 

properties of nanofluids are proposed in 

the literature. In the present study, we are 

adopting the relations which depend on the 

nanoparticles volume fraction only and 

which were proven and used in many 

previous studies as follows: 

Thermal diffusivity (Abu-Nada [15]):     

 
nfp

nf

nf
C

k


   (7) 

 

Heat capacity (Khanafer et al. [6]): 

 

      
pfnf CpCp1Cp    (8)  

  

Thermal conductivity, based on Maxwell-

Garnetts  

 
 

   
    f

pffp

pffp

nf k
kkk2k

kk2k2k
k








  (9)  

 

Viscosity (Brinkman [27]) 

  5.2

f

nf
1 





   (10)  

 

where k and (ρCp) represent the thermal 

conductivity and heat capacity, 

respectively. 

 

       Introducing the following 

dimensionless set: D=d/L X=x/L, Y=y/L, 

U=uL/αf, V=vL/αf, θnf=(Tnf-Tc)/(Th-Tc),  

θw=(Tw-Tc)/(Th-Tc), and the dimensionless 

definition of the stream function as: 

U=∂Ψ/∂Y, V=-∂Ψ/∂X , the set of Equations 

(4), (5), and (6) can be rewritten for the 

nanofluid-saturated porous medium as 
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and for the solid wall 

 

0w

2    (13)  

 

where 22222 yx   is the Laplace 

operator and Ra is the Rayleigh number of 

the porous media defined 

as    ffff LTcThgKRa   .  

 

        Equations (11) to (13) are subjected 

to the following boundary conditions: 

 

Ψ=0 on the solid boundaries. 

 

θnf=0 on the right vertical wall, X=1, 

0≤Y≤1 

 

∂θnf,w/∂Y=0 on the upper horizontal wall 

0< X <1, Y=1 and on the horizontal lower 

wall      0< X <1, Y=0. 

 

 

θw=1 on the vertical right wall, X=0, 0 ≤ Y 

≤1. 

 

 At the interface between the solid 

wall and the fluid-saturated porous 

medium, the equilibrium state is assumed 

to be verified. Therefore, both the 

temperatures and the heat fluxes are the 

same; 

θnf= θw   and   
x

k
x
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w
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x
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where Kr is the thermal conductivity ratio,  
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  (15)  

It is worth to mention here that when  =0, 

the value of Kr becomes: kwf= kw/kf, which 

shows the effect of wall thermal 

conductivity kw on the heat transfer within 

the porous cavity.  

 

 The local Nusselt number along the 

interface within the nanofluid-saturated 

porous medium side can be written as: 

 

i

nf

f

nf

nf,i
Xk

k
Nu 








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
  (16)  

 

     The average Nusselt numbers of 

interest are calculated on the interface (for 

the porous medium) and on the vertical 

right wall, respectively as:     
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1

0

nf,ii dYNuNu      (17)  
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1

0 1X
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f

nf
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 Due to energy balance, the overall 

heat transfer entering to the porous cavity 

from the interface line must be equal to 

that leaving the cavity from the right wall. 

Hence, the following energy balance can 

be employed for checking the accuracy of 

the numerical solution: 

 

NuNui     (19)  

 
3. Numerical solution and 
validations        

The final form of the governing 

equations set (Eqs. (11), (12) and (13)) are 

discretized uniformly (ΔX=ΔY) over the 

square domain using the central finite-

difference method. The values of the 

dimensionless solid wall D are varied with 

care in such a way that the interface must 

be localized on grid nodes. The boundary 

condition Eq.(14) is interpreted 

numerically by taking three points 

backward temperature gradient for the 
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solid wall and three points forward 

temperature gradient through the porous 

medium and since θnf= θw, hence, the 

following difference equation is invoked to 

compute the interface temperature: 

 
     

 r

wwrnfnf

i
K13

)j,2i()j,1i(4Kj,2ij,1i4
)j,i(









                                                                        

                                                               (20)  

 

The descretized equations of the other 

situations are stated in Appendix A. Gauss-

Seidel iteration procedure with Over 

Successive Relaxation (OSR) method is 

followed in the solution. The iteration is 

terminated when the following criterion is 

satisfied; 

 

6

old

oldnew 10
)j,i(

)j,i()j,i(
max 







 


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χ denotes any variable, Ψ, θnf or θw. Now, 

the choice of grid size requires some effort. 

The suitable grid size was based not only 

on the steadiness of say Nusselt number, 

but also on the verification of energy 

balance through the domain i.e. Equation 

(19). It is found that these conditions are 

sensitive to the value of the Rayleigh 

number. Figure 2 presents grid dependency 

behavior for Ra=1000, D=0.1, kwf=1, with 

volume fraction  =0.1. Accordingly, a 

grid size of 71x71 was chosen in the 

numerical solution as a compromise 

between the accuracy and the running time.  

 

      The numerical methodology was 

coded in Matlab. The steps of numerical 

calculations are presented in Appendix B. 

To check the validity of the present code, a 

comparison with selective data from the 

published literature was carried out. 

However, the comparison was made with 

two different cases namely: conjugate 

horizontally heating (Saied [26]) and 

resolving, using the present code, 

conjugate Darcy-Bénard convection (Saleh 

et al. [28]). Figure 3 shows a selective 

comparative case with [26], while Table 1 

presents some comparative data with both 

[26] and [28].  It is obvious that good 

agreement is obtained, knowing that 

different numerical techniques were 

followed in these two different works. As a 

result, the confidence in the present 

numerical solution is enhanced.  

   

 

4. Results and Discussion 
The numerical results represented 

by the isotherms, streamlines, and average 

Nusselt number are presented in this 

section. The studied parameters ranges are: 

Rayleigh number Ra=10-1000, wall 

thickness D=0.05-0.5, solid volume 

fraction  =0.0-20%, and the thermal 

conductivity of wall to fluid (water) ratio 

kwf=0.1, 1, 10. The considered nanoparticle 

is copper (Cu) which has thermophysical 

properties presented in Table 2.  

Figure 4 shows the effect of Ra on 

the isotherms and streamlines for D=0.3, 

 =0.1 and kwf=1.0. At very low Rayleigh 

number (Ra=10), the isotherms of the 

porous domain seem to be vertical, and 

since the heating is horizontal 

(differentially heated) so that, this implies 

to that the heat is transferred by 

conduction. Increasing Rayleigh number 

(Ra=500-1000), the isotherms within the 

porous domain become mostly horizontal 

which implies to convection dominance. 

This result is well known in the literature. 

On the right of Fig. 4, the strength of 

streamlines increases noticeably with Ra. 

The mechanism of forming such streamline 

is as follow: the fluid closest to the left hot 

wall (interface) is heated, and then it 

moves to the right cold wall (due to 

differentially heating) and moves up due to 

convection (Buoyancy force). When it 

becomes closer to the upper adiabatic wall, 

it turns to the right and falls down to the 

lower adiabatic wall. Hence, a single 

vortex of clockwise rotation (negative 

sign) is formed within the porous domain.  

 

Figure 5 presents the effect of wall 

thermal conductivity on the isotherms and 
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streamlines for D=0.3,  =0.1, and 

Ra=1000. Since we considered only one 

fluid type (water) hence the ratio kwf 

reflects the effect of wall thermal 

conductivity.   At very low wall 

conductivity (kwf=0.1) the wall thermal 

resistance is very high accordingly, hence a 

steeper gradient of isotherms within the 

wall is seen and less amount of heat is 

transferred to the porous domain. Increase 

of kwf, lead to reduce the wall thermal 

resistance.  This can be characterized by 

the reduction of isotherms gradient within 

the wall and the convection activation 

within the porous cavity. The streamline 

shown in the right of Fig. 5 also 

emphasizes the effect of wall thermal 

conductivity; where the streamlines are 

strengthen with increasing kwf. On the 

other hand, the effect of wall thickness D is 

presented in Fig. 6. In contrast with Fig. 5, 

the wall thermal resistance is directly 

proportional with D, so that and as shown 

in Fig. 6, when D is increased from 0.05 to 

0.5, the temperature (isotherm) gradient 

within the wall is increased with less 

convection amount within the porous 

domain. However, Figs. 5 and 6 indicate to 

the fact that the thermal resistance of the 

wall is inversely proportional with its 

thermal conductivity and directly with its 

thickness.  

The effect of solid volume fraction 

  on the behavior of isotherm and 

streamlines is presented for two Rayleigh 

numbers Ra=10 and Ra=1000 in Figs. 7 

and 8 respectively. No evident influence of 

  can be drawn from these two figures 

except that at Ra=1000, the streamlines 

closer to the vertical walls are thinner for 

lower   values. To understand the effect 

of , the average Nusselt number is plotted 

against  , Ra, and D as presented in Figs. 

9-12. In Fig. 9, the wall thickness D and 

conductivity ratio kwf are fixed while the 

other two parameters are varied. It is clear 

that the average Nusselt number Nu is 

increased with   at very low Rayleigh 

(Ra=10), otherwise, Nu is slightly 

deteriorated as in Ra= 500 and 1000. Fig. 

10 also enhance this behavior where it is 

seen that increasing the solid volume 

fraction   enhance Nu only when Ra < 

100. The reason of such behavior refers to 

that adding solid nanoparticles increase not 

only the thermal conductivity of the 

nanofluid (Eq. (9)), but the viscosity (Eq. 

(10)) and density [16] are increased also 

which in turn increases the effect of 

viscous and inertia forces. At very low Ra, 

the viscous and inertia are already small so 

that their effect remains small despite 

increasing   i.e. the effect of the enhanced 

thermal conductivity will overcome the 

effect of these two forces. But at higher 

values of Ra, where the viscous and inertia 

are significant, the increase of   will 

enhance these two forces over the thermal 

conductivity, so a deterioration of Nu is 

recorded. This behavior was reported in 

many published works as in [10, 15-16, 24-

25].  The effect of wall thickness on Nu is 

depicted in Fig. 11. In general, increasing 

D decreases Nu because of the increased 

thermal resistance of the wall which resists 

the heat transferred to the porous cavity. 

No significant effect of   on Nu at high D 

values (D ≥0.2) is recorded from this 

figure. At lowest D (0.05), about 12% 

reduction in Nu is seen when   increased 

from 0 to 20%.  The effect of wall to fluid 

thermal conductivity ratio kwf on Nu is 

plotted in Fig. 12. No significant effect of 

  on Nu at low kwf values (kwf ≤1) is 

recorded while at high kwf, about 12% 

reduction in Nu when   increased from 0 

to 20% is seen. However the reduction of 

Nu recorded in Figs. 11-12 occurs at the 

largest values of Nu where in this case the 

viscous and inertia forces are significant.  

Figures 13 and 14 depict the effect of Ra 

on Nu for different values of D and kwf. As 

it expected, increasing of Ra leads to 

enhance the convection and hence 

increasing Nu. But this relation is very 

limited when the wall resistance posses 

high value as in D=0.5 (Fig. 13) and in 

kwf=0.1 (Fig. 14).  Eventually, the local 
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Nusselt number along the interface within 

the nanofluid-saturated porous medium 

Nui,nf is depicted in Fig. 15 for D=0.2 and 

kwf=1 and different Ra and   values.  

       

5. Conclusions 
      The problem of steady conjugate 

natural convection-conduction heat transfer 

in a square porous cavity heated 

differentially and filled with nanofluids 

was investigated numerically using Over 

Successive Relaxation (OSR) finite-

difference method. The following remarks 

are concluded from the numerical results: 

 

1- The heat transfer within nanofluids-

saturated porous media may be enhanced 

or deteriorated with increasing the 

nanoparticles volume fraction. This 

significantly depends on the Rayleigh 

number and the solid wall thickness, where 

when Ra ≤ 100, the average Nusselt 

number is an increasing function of 

volume fraction regardless of the other 

parameters, when Ra > 100, an influence 

of the solid wall thickness on the Nusselt 

number is originated.  

2- The natural convection inside the 

nanofluid-saturated porous medium cavity 

is enhanced with increasing the solid wall 

conductivity and decreasing its thickness, 

and vice versa. 

3- The most common effect of the 

Rayleigh number on the Nusselt number is 

held in this study, i.e. the Nusselt number 

is an increasing function of the Rayleigh 

number.   
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Table 1.  Comparison of the average Nusselt numbers with other works – 

conjugate cases, pure fluid ( =0) 

 

Ra D kwf 
Saeid [26] Saleh et al. [28] Present 

Nu Nu Nu 

500 0.1 0.44 2.333 - 2.334 

1000 0.4 2.4 3.511 - 3.49 

1000 0.2 0.1 - 0.446 0.484 

1000 0.5 1 - 1.566 1.589 

Table 2. Thermo physical properties of base 

fluid and Cu nanoparticles [12] 

Physical property base fluid 

(water) 
Cu 

Cp (J/kg/K) 4179 385 

ρ(kg/m
3
) 997.1 8933 

k (W/m/K) 0.613 401 

β x 10
-5

 (1/K) 21 1.67 

d 

Th Tc 

Nanofluid 

in porous 

media 

Wall 

Fig.1 Schematic illustration of the problem 

 

L 

x 

y 
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Appendix A: Finite differences formulas 
 

Solid domain: 

4

1j,i1j,ij,1ij,1i

j,i

 



  

 

Porous domain: 

 4321j,i
c

1
   

 

where: 
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Top boundary nodes: 

The same relations above but replacing the index j+1 with j-1 ( 0u
y

,0
y









  ) 

 

Bottom boundary nodes: 

The same relations above but replacing the index j-1 with j+1 ( 0u
y

,0
y









  ) 

 

Corner nodes  

The four corner nodes are included within the isothermal sides.  

j=1 

j=Ny 

i=
1
 

i=
N

x
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Appendix B: Steps of numerical calculations 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

(2) Calculate kr , knf , Cpnf , αnf  , ρnf 

(3) Set the initial values for θw , θnf , Ψ  in each nods (N x N) 

(5) Calculate a new value of θw for each nodes which lie in the wall 

(0<x<D) from Eq.13 and then calculate the deference between the old 

and new value which will equal (error 1) in each nodes. 
Ai, Bi, Ci, Fi 

 

(6) Calculate a new value of θnf for each nods which lie in the nanofluid 

(D<x<1) from Eq.12 and then calculate the deference between the old 

and new value which will equal (error2) in each nods. 

(7) Calculate a new value of Ψ for each nods which lie in the nanofluid 

(D<x<1) from Eq.11 and then calculate the deference between the old 

and new value which will equal (error3) in each nods. 

(4) Set the boundary conditions:  

θw=1 at x=0, θnf =0 at x=1, ∂θ/∂Y=0 at Y=0 and at Y=1 

Ψ=0 throughout solid boundaries.  

 

(1) Set the values D , L , kw , Ra , ks , kf ,  αf  , N, Ø ,Cps , Cpf  , ρf , ρs 

(8) Find the maximum error from matrixes (error1, error2 & error3) 

(9) End  

If maximum 

error ≤ 1E-05 

Yes  

(9) Set the new value instead the old for  θw , θnf , Ψ 

  

NO 
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